Abstract

3D-QSAR studies were conducted on a series of paullones as CDK inhibitors using three-dimensional quantitative structure–activity relationship (3D-QSAR) methods. Two methods were compared: the widely used comparative molecular field analysis (CoMFA) and the recently reported comparative molecular similarity indices analysis (CoMSIA). Systematic variations of some parameters in CoMSIA and CoMFA were performed to search for the best 3D-QSAR model. The computed results showed that the 3D-QSAR models from CoMSIA were clearly superior to those from CoMFA. Using the best model from CoMSIA analysis, a significant cross-validated q 2 was obtained and the predicted biological activities of the five compounds in the test set were in good agreement with the experimental values. The correlation results obtained from CoMSIA were graphically interpreted in terms of field contribution maps allowing physicochemical properties relevant for binding to be easily mapped back onto molecular structures. The features in the CoMSIA contour maps intuitively suggested where to modify a molecular structure in terms of physicochemical properties and functional groups in order to improve its binding affinity, which is very important for improving our understanding of the ligand–receptor interactions and in helping to design compounds with improved activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call