Abstract

Cryogel has macroporous structure and advantages of mechanical stability and injectability for biomedical applications. Three-dimensional (3D) printing is a customized manufacturing technology. However, there is little research on 3D printing of cryogel. In this work, we developed a 3D-printable chitosan cryogel using difunctional polyurethane nanoparticles as the crosslinker that reacted with chitosan at 4 °C for 4 h to form a stable feeding hydrogel (pre-cryogel) for 3D printing. The printed pre-cryogel was frozen at −20 °C to form 3D-printed chitosan cryogel. The 3D-printed cryogel had properties similar to those of bulk cryogel such as high compressibility, elastic recovery, and water absorption (≈3200%). Results from cell experiments indicated that the 3D-printed chitosan cryogel scaffolds provided good mechanical integrity for proliferation and chondrogenic differentiation of human adipose-derived adult stem cells. The 3D-printed chitosan cryogel scaffolds with injectability and shape recovery property are potential biomaterials for customized tissue engineering and minimally invasive surgery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call