Abstract
BackgroundProximal humerus fractures (PHF) are frequent, however, several studies show low inter-rater agreement in the diagnosis and treatment of these injuries. Differences are usually related to the experience of the evaluators and/or the diagnostic methods used. This study was designed to investigate the hypothesis that shoulder surgeons and diagnostic imaging specialists using 3D printing models and shoulder CT scans in assessing proximal humerus fractures.MethodsWe obtained 75 tomographic exams of PHF to print three-dimensional models. After, two shoulder surgeons and two specialists in musculoskeletal imaging diagnostics analyzed CT scans and 3D models according to the Neer and AO/OTA group classification and suggested a treatment recommendation for each fracture based on the two diagnostic methods.ResultsThe classification agreement for PHF using 3D printing models among the 4 specialists was moderate (global k = 0.470 and 0.544, respectively for AO/OTA and Neer classification) and higher than the CT classification agreement (global k = 0.436 and 0.464, respectively for AO/OTA and Neer). The inter-rater agreement between the two shoulder surgeons were substantial. For the AO/OTA classification, the inter-rater agreement using 3D printing models was higher (k = 0.700) than observed for CT (k = 0.631). For Neer classification, inter-rater agreement with 3D models was similarly higher (k = 0.784) than CT images (k = 0.620). On the other hand, the inter-rater agreement between the two specialists in diagnostic imaging was moderate. In the AO/OTA classification, the agreement using CT was higher (k = 0.532) than using 3D printing models (k = 0.443), while for Neer classification, the agreement was similar for both 3D models (k = 0.478) and CT images (k = 0.421). Finally, the inter-rater agreement in the treatment of PHF by the 2 surgeons was higher for both classifications using 3D printing models (AO/OTA—k = 0.818 for 3D models and k = 0.537 for CT images). For Neer classification, we saw k = 0.727 for 3D printing models and k = 0.651 for CT images.ConclusionThe insights from this diagnostic pilot study imply that for shoulder surgeons, 3D printing models improved the diagnostic agreement, especially the treatment indication for PHF compared to CT for both AO/OTA and Neer classifications On the other hand, for specialists in diagnostic imaging, the use of 3D printing models was similar to CT scans for diagnostic agreement using both classifications.Trial registrationBrazil Platform under no. CAAE 12273519.7.0000.5505.
Highlights
Proximal humerus fractures (PHF) are frequent, affecting a significant number of adults and elderly victims due to trauma or falls
This study presents 3D printing models of PHF as an alternative method for diagnosing and treating these injuries
Specialists in shoulder surgery linked to the Shoulder and Elbow Sector of the Department of Orthopedics and Traumatology at Escola Paulista de Medicina (DOT/UNIFESP) and two doctors, specialized in musculoskeletal imaging diagnostics associated with the Department of Diagnostic Imaging at Escola Paulista de Medicina (DDI/UNIFESP), were invited to evaluate the exams
Summary
Proximal humerus fractures (PHF) are frequent, affecting a significant number of adults and elderly victims due to trauma or falls. Its prevalence in hospital emergency care is substantial and corresponds to approximately 45% of humerus fractures and 5% of total fractures [12, 23, 29]. PHF is relevant and is growing worldwide, controversies related to its diagnosis and treatment definitions are still frequent [8, 9, 11, 17, 22, 25]. Proximal humerus fractures (PHF) are frequent, several studies show low inter-rater agreement in the diagnosis and treatment of these injuries. This study was designed to investigate the hypothesis that shoulder surgeons and diagnostic imaging specialists using 3D printing models and shoulder CT scans in assessing proximal humerus fractures
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.