Abstract

Three-dimensional (3D) printing is an exciting form of manufacturing technology that has transformed the way we can treat various medical pathologies. Also known as additive manufacturing, 3D printing fuses materials together in a layer-by-layer fashion to construct a final 3D product. This technology allows flexibility in the design process and enables efficient production of both off-the-shelf and personalized medical products that accommodate patient needs better than traditional manufacturing processes. In the field of orthopaedic surgery, 3D printing implants and instrumentation can be used to address a variety of pathologies that would otherwise be challenging to manage with products made from traditional subtractive manufacturing. Furthermore, 3D bioprinting has significantly impacted bone and cartilage restoration procedures and has the potential to completely transform how we treat patients with debilitating musculoskeletal injuries. Although costs can be high, as technology advances, the economics of 3D printing will improve, especially as the benefits of this technology have clearly been demonstrated in both orthopaedic surgery and medicine as a whole. This review outlines the basics of 3D printing technology and its current applications in orthopaedic surgery and ends with a brief summary of 3D bioprinting and its potential future impact.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call