Abstract
Author(s): Zhu, Hongru; Yuille, Alan; Kersten, Daniel | Abstract: Perceiving 3D structure in natural images is an immense computational challenge for the visual system. While many previous studies focused on rigid 3D objects, we applied a novel method on a common set of non-rigid objects—static images of the human body in the natural world. We investigated to what extent human ability to interpret 3D poses in natural images depends on pose typicality and viewpoint informativeness. We tested subjects on matching natural pose images with synthetic body images of the same poses given viewpoint changes. We found that performance for typical poses was measurably better than atypical poses; however, we found no significant difference between informative and less informative viewpoints. Results suggested that human ability to interpret 3D poses depends on pose typicality but not viewpoint informativeness. Further comparisons of 2D and 3D pose matching models suggested that humans probably use prior knowledge of 3D pose structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.