Abstract
Three-dimensional (3D) porous vanadium nitride nanoribbon aerogels (PVNNRAs) are prepared by hydrothermal synthesis and subsequent nitridation in ammonia/argon atmosphere and investigated as Pt-free counter electrode in dye-sensitized solar cells (DSCs). 3D porous nanoribbon aerogel can simultaneously offer more electrocatalytic active sites, a fast electron-transport pathway, and a favorable electrolyte diffusion channel, which endows the PVNNRA electrode with high electrocatalytic activity for the reduction of I3−. Under full-sun illumination (AM 1.5, 100mWcm−2), the DSC fabricated with PVNNRA counter electrode achieves a conversion efficiency of 7.05%, which is comparable to that of DSCs fabricated with Pt counter electrode. In addition, the PVNNRA electrode exhibits good stability in I−/I3− redox electrolyte. Thus, 3D PVNNRAs can be considered as a cost-effective alternative to Pt as the counter electrode of DSCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.