Abstract

Abstract Diverse three-dimensional (3D) porous metal electrodes, including meshes, foams and felts, are used in electrochemical flow reactors for a wide range of industrial applications, such as energy storage, electrosynthesis and degradation of pollutants. Recent work centres on the hierarchical decoration and coating of 3D electrodes with catalysts, although the study of their performance in a controlled and reproducible flow and mass transfer environment ought to receive more attention. New advances have considered metal nanofelts and nanomesh porous electrodes with superior electrode surface area. Opportunities are found in additive manufacturing, advanced structural characterisation by, for example, X-ray computed tomography, and in the modelling of hydrodynamic characteristics, current distribution and mass transfer coefficient of these electrode materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call