Abstract
Three-dimensional porous carbon materials were synthesized by the one-step pyrolysis of organic salts with different numbers of hydroxyl groups on the side chain (sodium tartrate, sodium malate and sodium succinate). Further, the formation of these porous carbon materials was explored. And then, three kinds of carbon materials were used for constructing electrochemical sensors for nitrite detection, respectively. Porous carbon derived from sodium tartrate (PCST) showed the highest electrocatalytic ability for nitrite oxidation among all three materials. The PCST-based sensors allow for rapid detection of nitrite in a wide linear range of 0.1–100 μM with a low detection limit of 0.043 μM. The sensor was applied to detect nitrite in meat samples and the results tested by the developed sensor were consistent with the results obtained by HPLC. We envision that PCST-based electrochemical sensor is promising as an alternative choice for the development of electrochemical analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.