Abstract

In the cultural heritage field, point clouds, as important raw data of geomatics, are not only three-dimensional (3D) spatial presentations of 3D objects but they also have the potential to gradually advance towards an intelligent data structure with scene understanding, autonomous cognition, and a decision-making ability. The approach of point cloud semantic segmentation as a preliminary stage can help to realize this advancement. With the demand for semantic comprehensibility of point cloud data and the widespread application of machine learning and deep learning approaches in point cloud semantic segmentation, there is a need for a comprehensive literature review covering the topics from the point cloud data acquisition to semantic segmentation algorithms with application strategies in cultural heritage. This paper first reviews the current trends of acquiring point cloud data of cultural heritage from a single platform with multiple sensors and multi-platform collaborative data fusion. Then, the point cloud semantic segmentation algorithms are discussed with their advantages, disadvantages, and specific applications in the cultural heritage field. These algorithms include region growing, model fitting, unsupervised clustering, supervised machine learning, and deep learning. In addition, we summarized the public benchmark point cloud datasets related to cultural heritage. Finally, the problems and constructive development trends of 3D point cloud semantic segmentation in the cultural heritage field are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call