Abstract
A new three-dimensional microporous metal-organic framework Cu(BDC-OH)(4,4'-bipy)·G(x) (UTSA-15; H(2)BDC-OH = 2-hydroxy-benzenedicarboxylic acid, 4,4'-bipy =4,4'-bipyridine, G = guest molecules) with functional -OH groups on the pore surfaces was solvothermally synthesized and structurally characterized. UTSA-15 features a three-dimensional structure having 2D intercrossed channels of about 4.1 × 7.8 and 3.7 × 5.1 Å(2), respectively. The small pores and the functional -OH groups on the pore surfaces within the activated UTSA-15a have enabled their strong interactions with CO(2) and C(2)H(2) which have been revealed in their large adsorption enthalpies of 39.5 and 40.6 kJ/mol, respectively, highlighting UTSA-15a as the highly selective microporous metal-organic framework for the CO(2)/CH(4) and C(2)H(2)/CH(4) gas separation with separation selectivity of 24.2 and 55.6, respectively, at 296 K.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.