Abstract

The coarsening kinetics of γ ′ precipitates in binary Ni–Al alloy is studied using three-dimensional (3D) phase-field simulations. The bulk thermodynamic information and atomic diffusion mobilities are obtained from databases constructed using the CALPHAD approach, while the experimental values for the interfacial energy, elastic constants and lattice mismatch are directly employed in the phase-field model. Specifically, we predict the morphological evolution, average precipitate size, and size distribution as a function of time for a given temperature and composition. Comparison of the phase-field simulation results with experiments shows good quantitative agreement in both time and length scales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.