Abstract
The number of martensitic variants depends on the grain size and orientation of parent phase. Although the growth of polytwin structure with the combination of different martensitic variants was studied by in situ dynamic observation, the energy change during the growth of martensite cannot be revealed, and in turn the strain self-accommodation of martensitic transformation (MT) cannot be confirmed. Based on the recent study of the phase field model, describing proper martensitic transformation for a single-crystal system under a fully constrained boundary, a three-dimensional (3D) phase field simulation is performed to demonstrate the microstructure evolution of plolytwin structure in this paper, meanwhile, the energy change during the growth of martensite is calculated. The results indicate that during the growth of two martensitic variants the total strain energy increases with prolonging microstructural evolution time, however, the opposite change occurs during the growth of three martensite variants. The 3D phase field simulation reveals that the growth of three martensitic variants possesses the best strain self-accommodation effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.