Abstract

Transition to turbulence in plane channel flow occurs even for conditions under which modes of the linearized dynamical system associated with the flow are stable. In this paper an attempt is made to understand this phenomena by finding the linear three-dimensional perturbations that gain the most energy in a given time period. A complete set of perturbations, ordered by energy growth, is found using variational methods. The optimal perturbations are not of modal form, and those which grow the most resemble streamwise vortices, which divert the mean flow energy into streaks of streamwise velocity and enable the energy of the perturbation to grow by as much as three orders of magnitude. It is suggested that excitation of these perturbations facilitates transition from laminar to turbulent flow. The variational method used to find the optimal perturbations in a shear flow also allows construction of tight bounds on growth rate and determination of regions of absolute stability in which no perturbation growth is possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.