Abstract

A computer vision system has been implemented that can recognize three-dimensional objects from unknown viewpoints in single gray-scale images. Unlike most other approaches, the recognition is accomplished without any attempt to reconstruct depth information bottom-up from the visual input. Instead, three other mechanisms are used that can bridge the gap between the two-dimensional image and knowledge of three-dimensional objects. First, a process of perceptual organization is used to form groupings and structures in the image that are likely to be invariant over a wide range of viewpoints. Second, a probabilistic ranking method is used to reduce the size of the search space during model-based matching. Finally, a process of spatial correspondence brings the projections of three-dimensional models into direct correspondence with the image by solving for unknown viewpoint and model parameters. A high level of robustness in the presence of occlusion and missing data can be achieved through full application of a viewpoint consistency constraint. It is argued that similar mechanisms and constraints form the basis for recognition in human vision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.