Abstract

In this paper, a three-dimensional numerical model of the proton exchange membrane fuel cells (PEMFCs) with conventional flow field designs (parallel flow field, Z-type flow field, and serpentine flow field) has been established to investigate the performance and transport phenomena in the PEMFCs. The influences of the flow field designs on the fuel utilization, the water removal, and the cell performance of the PEMFC are studied. The distributions of velocity, oxygen mass fraction, current density, liquid water, and pressure with the convention flow fields are presented. For the conventional flow fields, the cell performance can be enhanced by adding the corner number, increasing the flow channel length, and decreasing the flow channel number. The cell performance of the serpentine flow field is the best, followed by the Z-type flow field and then the parallel flow field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.