Abstract

Endosseous oral implants have been used as orthodontic anchorage in subjects with multiple tooth agenesis, and their application under orthodontic loading has been demonstrated clinically and experimentally. The aim of this investigation was to examine three-dimensional (3D) bone and implant finite element (FE) models. The first model assumed that there was no osseointegration and the second that full osseointegration had occurred. These models were used to determine the pattern and distribution of stresses within the ITI-Bonefit endosseous implant and its supporting tissues when used as an orthodontic anchorage unit. The study examined a threaded implant placed in an edentulous segment of a human mandible with cortical and cancellous bone. The results, using both models, indicated that the maximum stresses were always located around the neck of the implant, in the marginal bone. Thus, this area should be preserved clinically in order to maintain the bone-implant interface structurally and functionally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.