Abstract
Forced convective laminar flow of different types of nanofluids such as Al2O3, CuO, SiO2, and ZnO, with different nanoparticle size 25, 45, 65, and 80 nm, and different volume fractions which ranged from 1% to 4% using ethylene glycol as base fluids were used. A three‐dimensional microtube (MT) with 0.05 cm diameter and 10 cm in length with different values of heat fluxes at the wall is numerically investigated. This investigation covers Reynolds number (Re) in the range of 80 to 160. The results have shown that SiO2‐EG nanofluid has the highest Nusselt number (Nu), followed by ZnO‐EG, CuO‐EG, Al2O3‐EG, and finally pure EG. The Nu for all cases increases with the volume fraction but it decreases with the rise in the diameter of nanoparticles. In all configurations, the Nu increases with Re. In addition, no effect of heat flux values on the Nu was found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.