Abstract

An integrated numerical model predicting microstructural evolution, three-dimensional plastic deformation and temperature changes has been applied to industrial hot bar rolling and H-beam rolling. This model enables us to predict three-dimensional metal flow and temperature changes as well as transient in grain size change and dislocation density distribution in and after hot rolling. To demonstrate the successfulness of the proposed model, it was applied to the analysis of two different industrial bar rolling schedules, in which total number of passes and caliber systems were different with each other. It was also applied to the analysis of the H-beam rolling sequences with different heat treatment conditions. Microstructural evolution starting from deformed austenite to ferrite/pearlite/bainite after phase transformation was successfully simulated. Microstructural evolution in and after hot rolling as well as metal flow and temperature can be easily obtained through the proposed model using rolling condition and alloy composition as the functional variables. This model is a very useful tool for designing and optimizing rolling conditions so that products with the best internal quality and dimensional accuracy can be obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.