Abstract

The objective of this paper is to investigate the 3D non-linearly thermally radiated flow of a Jeffrey nanofluid towards a stretchy surface with the Cattaneo–Christov heat flux (CCHF) model in the presence of a convective boundary condition.The Homotopy Analysis Method (HAM) is used to solve the ordinary differential equation that is obtained by reforming the governing equation using suitable transformations. The equations obtained from HAM are plotted graphically for different parameters. In addition, the skin-friction coefficient, local Nusselt number, and Sherwood number for various parameters are calculated and discussed. The velocity profile along the x- and y-directions decrease with a raise in the ratio of relaxation to retardation times. The concentration and temperature profile rises while magnifying the ratio of relaxation to retardation times. While raising the ratio parameter, the x-direction velocity, temperature, and concentration profile diminishes, whereas the y-direction velocity profile magnifies. Magnifying the Deborah number results in a rise in the velocity profile along the x- and y-directions, and a decline in the temperature and concentration profile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call