Abstract

The three‐dimensional nonlinear evolution of equatorial ionospheric bubbles, using a realistic lower atmospheric gravity wave source, has been computed. It is found that three‐dimensional finite parallel conductivity effects are important and lead to reduced gravity wave‐induced electric fields, less depleted bubbles, and longer time scale bubble evolution compared to the two‐dimensional case. It is concluded that nearly zonal propagating gravity waves are needed to excite equatorial ionospheric bubbles in the presence of zonal tidal winds. The simulated ionospheric bubble structures are consistent with recent observations in the SpreadFEx campaign.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.