Abstract

The All-on-4 design was used successfully for restoring edentulous mandible. This design avoids anatomic cripples such as inferior alveolar nerve by tilting posterior implants. Moreover, tilting posterior implants of All-on-4 design had a mechanical preference than the conventional design. On the other hand, the anterior implants are parallel at the lateral incisor region. Several researches showed favorable results for tilting posterior implants. However, research did not study the influence of the anterior implant position or orientation on the mechanical aspects of this design. This study analyzes the influence of varying anterior implant position and orientation of the All-on-4 design using nonlinear contact 3D finite-element analysis. Three copied 3-dimensional models of the All-on-4 design were classified according to anterior implant position and orientation. The frictional contact between fixtures and bone was the contact type in this finite element analysis. Finally, von Mises stress and strain at implant and bone levels were recorded and analyzed using finite element software. Stress concentrations were detected mainly around the posterior implant at the loaded side. Values of the maximum equivalent stress and strain were around tilted implants of design III followed by design II, then design I. Changing the position or orientation of the anterior implants in All-on-4 design influences stress-strain distribution of the whole design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call