Abstract

AbstractMagnetic skyrmions are localized non-collinear spin textures, characterized by an integer topological charge. Commonly observed in thin systems as two-dimensional sheets, in three dimensions skyrmions form tubes that are thought to nucleate and annihilate along their depth on points of vanishing magnetization. However, a lack of techniques that can probe the bulk of the material has made it difficult to perform experimental visualizations of skyrmion lattices and their stabilization through defects. Here we present three-dimensional visualizations of a bulk Co8Zn8Mn4 skyrmion lattice through a tomographic algorithm applied to multiprojection small-angle neutron scattering measurements. Reconstructions of the sample show a disordered skyrmion lattice exhibiting three-dimensional topological transitions through emergent (anti)monopole branching and segmentation defect pathways. Our technique provides insights into skyrmion stabilization and topological transition pathways in a bulk skyrmion lattice, guiding the future development and manipulation of skyrmion materials for spintronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.