Abstract
Bulk g-C3N4 has suffered from its low specific surface area and high recombination of photogenerated electron-hole pairs. Herein, three-dimensional network structure g-C3N4 assembled by nanorods (3D g-C3N4 NR) was successfully fabricated via a chemical tailoring route. The as-prepared 3D g-C3N4 NR exhibits lager specific surface areas (6.7 times of bulk g-C3N4) and faster charge carrier transfer kinetics. Hence, the visible-light photocatalytic activities for degradation of phenol and hydrogen evolution over 3D g-C3N4 NR are evidently enhanced, 4.3 and 5.9 times as high as that of bulk g-C3N4, respectively. Briefly, this work throws light on structural tuning of carbon nitride polymer photocatalysts for improved solar energy capture and conversion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.