Abstract

A numerical investigation of the three-dimensional natural convection of a liquid metal contained in the horizontal Bridgman configuration, having an aspect ratio equal to 5 and submitted to an external magnetic field in either the longitudinal or vertical direction, is presented. The numerical approach is based on the finite-volume approximation. A computer program based on the SIMPLER algorithm is developed. The effect of a magnetic field provides a notable change on the flow and thermal structures. The strongest stabilization of the convection flow is found when the magnetic field is oriented vertically. Also, wall electrical conductivity has an effect on the average Nusselt number. A good agreement between our numerical simulations and experimental data found in the literature is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.