Abstract

Accurately acquiring the three-dimensional (3D) image of a porous medium is an imperative issue for the prediction of multiple physical properties. Considering the inherent nature of the multiscale pores contained in porous media such as tight sandstones, to completely characterize the pore structure, one needs to scan the microstructure at different resolutions. Specifically, low-resolution (LR) images cover a larger field of view (FOV) of the sample, but are lacking small-scale features, whereas high-resolution (HR) images contain ample information, but sometimes only cover a limited FOV. To address this issue, we propose a method for fusing the spatial information from a two-dimensional (2D) HR image into a 3D LR image, and finally reconstructing an integrated 3D structure with added fine-scale features. In the fusion process, the large-scale structure depicted by the 3D LR image is fixed as background and the 2D image is utilized as training image to reconstruct a small-scale structure based on the background. To assess the performance of our method, we test it on a sandstone scanned with low and high resolutions. Statistical properties between the reconstructed image and the target are quantitatively compared. The comparison indicates that the proposed method enables an accurate fusion of the LR and HR images because the small-scale information is precisely reproduced within the large one.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.