Abstract
Three-dimensional (3-D) motion estimation is applied to the problem of motion compensation for video coding. We suppose that the video sequence consists of the perspective projections of a collection of rigid bodies which undergo a rototranslational motion. Motion compensation can be performed on the sequence once the shape of the objects and the motion parameters are determined. We show that the motion equations of a rigid body can be formulated as a nonlinear dynamic system whose state is represented by the motion parameters and by the scaled depths of the object feature points. An extended Kalman filter is used to estimate both the motion and the object shape parameters simultaneously. The inclusion of the shape parameters in the estimation procedure adds a set of constraints to the filter equations that appear to be essential for reliable motion estimation. Our experiments show that the proposed approach gives two advantages. First, the filter can give more reliable estimates in the presence of measurement noise in comparison with other motion estimators that separately compute motion and structure. Second, the filter can efficiently track abrupt motion changes. Moreover, the structure imposed by the model implies that the reconstructed motion is very natural as opposed to more common block-based schemes. Also, the parameterization of the model allows for a very efficient coding of the motion information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.