Abstract

Right ventricular (RV) volume and functional assessments are essential in the management of pulmonary arterial hypertension but are often difficult to perform. Three-dimensional (3D) echocardiography is limited by acoustic dropout of the RV free wall in dilated ventricles. The aim of this study was to test the hypothesis that knowledge-based reconstruction, a novel method for 3D modeling of RV endocardium from two-dimensional echocardiographic images, could provide accurate measurements of RV volumes and systolic function. Twenty-seven patients with pulmonary arterial hypertension were prospectively recruited for same-day echocardiography and cardiovascular magnetic resonance (CMR), which was used as a reference standard. Two-dimensional transthoracic echocardiographic images were acquired with 3D spatial localization equipment to allow 3D reconstruction. Image analysis was performed with dedicated software to obtain end-diastolic volume (EDV) and end-systolic volume (ESV) and RV ejection fraction (EF). The method of disks was used to determine RV volumes on CMR. Echocardiographic RV volumes correlated well with CMR (EDV, R= 0.87; ESV, R= 0.88; EF, R= 0.75). For interobserver analyses, coefficients of variability were 7.8 ± 7.0% for EDV, 10.2 ± 8.0% for ESV, and 15.4 ± 13.8% for EF. For intraobserver analyses, coefficients of variability were 7.1 ± 5.1% for EDV, 8.3 ± 7.0% for ESV, and 10.9 ± 9.2% for EF. On Bland-Altman analyses, volumes obtained on transthoracic echocardiography (TTE) were slightly larger than those obtained by CMR (ΔEDVTTE-CMR, 5.8 ± 33.7 mL; ΔESVTTE-CMR, 3.5 ± 27.8 mL), whereas EFs tended to be slightly higher by CMR (ΔEFCMR-TTE, 0.5 ± 6.5%). Knowledge-based reconstruction provides accurate and reproducible measurements of RV volumes in patients with pulmonary arterial hypertension. Larger studies are needed to confirm these results and to determine the practicality of this approach in daily practice and as an end point in clinical trials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.