Abstract
A three-dimensional numerical model was used for calculating the velocity and bed level changes over time in a 90° bended channel. The numerical model solved the Reynolds-averaged Navier-Stokes equations in three dimensions to compute the water flow and used the finite-volume method as the discretization scheme. The k-ε model predicted the turbulence, and the SIMPLE method computed the pressure. The suspended sediment transport was calculated by solving the convection diffusion equation and the bed load transport quantity was determined with an empirical formula. The model was enhanced with relations for the movement of sediment particles on steep side slopes in river bends. Located on a transversally sloping bed, a sediment particle has a lower critical shear stress than on a flat bed. Also, the direction of its movement deviates from the direction of the shear stress near the bed. These phenomenona are considered to play an important role in the morphodynamic process in sharp channel bends. The calculated velocities as well as the bed changes over time were compared with data from a physical model study and good agreement was found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.