Abstract
Photo fermentation is an emerging approach of biohydrogen production as it is energy saving and environmentally friendly. Understanding mechanisms of controlling the bacteria growth and biohydrogen production is critical for effective improvements in energy harvest and waste treatment in photo fermentative bioreactors. In this study a comprehensive three-dimensional numerical platform of photo fermentation was developed, based on lattice Boltzmann method coupled with cellular automata. The model accounts for photosynthetic bacteria growth, illumination energy conversion by photosynthetic bacteria, and light transfer under biofilm growth. The results showed a threshold of illumination intensity. Below this threshold, the bioreactor performance increased as the illumination intensity increased. Above the threshold, the performance declined if the illumination intensity rose. The normalized average biohydrogen production at the illumination intensity of 6000lx, increased about 66.31%, 13.82% and 13.12%, respectively, compared to ones at 4000lx, 5000lx and 7000lx. An increase in inlet glucose concentration could increase biohydrogen concentration and extraction but dwindled biohydrogen yield. It was found that a lower inlet velocity had higher biohydrogen production rate and concentration but lower biohydrogen extraction and yield. The results demonstrate that the present LBM-CA platform can be a tool to study and enhance the photo fermentative production of biohydrogen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.