Abstract

In this paper, a three-dimensional (3-D) relaxation method is used to model the dynamic response behavior of liquid crystal (LC) directors in LC micro-optics structures with complex patterned electrodes. The method is based on Frank- Oseen continuum elastic theory by using a vectorial representation. This method can deal with liquid crystal structures with arbitrary patterned electrodes, and it is quite computational stability. Different numerical results obtained according the method are as follows: (1) the nematic LC structures with complex patterned electrodes applied by a constant voltage signal, and (2) the nematic LC structures with different thickness of LC layer, and (3) the nematic LC structures with different signal voltage. The typical results include the distribution of LC directors in LC layers, the distribution of electric potential in LC layers, and the distribution of phase retardation. The results show that the method can be used to effectively predict the formation of disclination lines, which has a strong impact on the performance of LC micro-optics structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call