Abstract
By the methods of mathematical three-dimensional modeling, the features of the distribution of electric and thermal fields in the volume of the molten alloy of the foundry hypoeutectic silumin A356, when it is treated with an electric current by parallel electrodes, are established. It was found that the geometry of the electrode system qualitatively and quantitatively determines the effect of the electrothermal effect on the melt by the treatment of the direct current. It was demonstrated that the depth of the deepening of electrodes with a non-insulated lateral surface does not have an active influence on the temperature processes during the conduction electric current treatment. The obtained qualitative and quantitative data for the systems with non-insulated electrodes correspond to the experimental data. It is shown that a change in the spatial geometry of the arrangement of electrodes with an isolated lateral surface significantly affects the three-dimensional distribution of electric and thermal fields as well as the quantitative, more than thrice, change in the characteristics of these fields in the volume of the melt. The method of controlling of the conductive electric current treatment of melts, based on the spatial change of the type of electrode system, does not require additional financial costs and can be carried out directly during the treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.