Abstract

A three-dimensional analytical and numerical method is presented in this article for the analysis of the acoustic fluid–structure interaction systems including, but not limited to, the brain, cerebro-spinal fluid (CSF), and skull. The model considers a three-dimensional acoustic fluid medium interacting with two solid domains. This article deals with the analytical and numerical computation of eigenproperties for an idealized human head model including fluid–structure interaction phenomena. We determine in the present work the natural frequencies and the modes shapes of the system of the brain, cerebro-spinal fluid (CSF), and skull. Two models are presented in this study: an elastic skull model and a rigid model. In the analysis, a potential technique is used to obtain in three-dimensional cylindrical coordinates a general solution for a solid problem. A finite element method analysis is also used to check the validity of the present method. The results from the proposed method are in good agreement with numerical solutions. The effects of the fluid thickness and compressibility on the natural frequencies are also investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.