Abstract
We investigate the distribution of partial melt in island arc using the seismic velocity structure of the mantle wedge beneath northeastern Japan. The comparison of the seismic tomography with laboratory velocity data on a partially-molten mantle rock yields estimates of melting zones in three dimensions. We employ experimental data on the degree of partial melt in hydrous peridotite to give constraints on the melt fraction and temperature. Melting and magma-rich zones derived from the velocity structure coincide with observed low Q zones. The results of the three-dimensional mapping indicate that the source of magma in island arc is diapir-like melting patches localized within the low velocity zones of the mantle wedge. Extensive volcanic activity along the volcanic front is due to the presence of vast magma-rich zones just beneath the Moho. Those melting zones in the uppermost mantle may, in turn, cause melting of lower crustal materials and produce felsic magma. Melt appears to stay at and beneath the Moho, where crystallization fractionation may proceed. Melt exists at greater depths in the back-arc region, which may correlate with across-arc variations of chemical compositions of the volcanic rocks observed in northeastern Japan. We suggest that magma migration in the ductile lower crust may cause low-frequency microearthquakes, and magma penetration into the brittle upper crust may produce mid-crustal S-wave reflectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.