Abstract

A computational method for magnetic fields formulated by a BEM (boundary element method) has been developed. In the method, a reduced scalar potential is selected as an unknown variable to simplify the calculation of the boundary conditions. Its use requires a high numerical accuracy of the potential gradient. Conventional BEM does not provide this, because numerical element integration for the singular kernal causes a large error. To overcome this difficulty, a highly accurate numerical integration scheme is proposed based on the BEM, and it is applied to magnetic field problems. Calculation results for a spherical permeable material in a problem proposed by the Institute of Electrical Engineers of Japan (the problem of a magnetic field generated by a coil) agreed with the exact solution and the experimental data within 5%.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.