Abstract

Three-dimensional macroporous calcium phosphate bioceramics embedded with porous chitosan sponges were synthesized to produce composite scaffolds with high mechanical strength and a large surface/volume ratio for load-bearing bone repairing and substitutes. The macroporous calcium phosphate bioceramics with pore diameters of 300 microm to 600 microm were developed using a porogen burnout technique, and the chitosan sponges were formed inside the pores of the bioceramics by first introducing chiosan solution into the pores followed by a freeze-drying process. Our scanning electron microscopy results showed that the pore size of chitosan sponges formed inside the macroporous structure of bioceramics was approximately 100 microm, a structure favorable for bone tissue in-growth. The compressive modulus and yield stress of the composite scaffolds were both greatly improved in comparison with that of HA/beta-TCP scaffolds. The simulated body fluid (SBF) and cell culture experiments were conducted to assess the bioactivity and biocompatibility of the scaffolds. In the SBF tests, a layer of randomly oriented needle-like apatite crystals formed on the scaffold surface after sample immersion in SBF, which suggested that the composite material has good bioactivity. The cell culture experiments showed that MG63 osteoblast cells attached to the composite scaffolds, proliferated on the scaffold surface, and migrated onto the pore walls, indicating good cell biocompatibility of the scaffold. The cell differentiation on the composite scaffolds was evaluated by alkaline phosphatase (ALP) assay. Compared with the control in tissue culture dishes, the cells had almost the same ALP activity on the composite scaffolds during the first 11 days of culture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.