Abstract

Kinematic analysis of the trunk during cerebral palsy (CP) gait has been well described. In contrast, movement of the lumbar spine is generally ignored. This is most likely due to the complex nature of the spine. As an alternative to using complex sensor protocols, this study modelled the lumbar region as a single segment and investigated characteristic patterns of movement during CP gait. In addition, the impact of functional level of impairment and the relationship with lower lumbar spinal loading were examined. Fifty-two children with CP (26 GMFCS I and 26 GMFCS II) and 26 controls were recruited. A full barefoot 3-dimensional kinematic and kinetic analysis were conducted. Lumbar segment movement demonstrated increased forward flexion for CP children. This movement became more pronounced according to GMFCS level with GMFCS II children demonstrating increases of up to 8°. In addition, a moderate correlation was present between lumbar flexion/extension and L5/S1 sagittal moments (r=0.427 in the global frame and r=0.448 with respect to the pelvis, p<0.01). Children with CP demonstrated increased movement of the lumbar region compared to TD, with movement becoming more excessive as GMFCS level increased. Excessive forward flexion and loading at the lumbar spine were linked. However, the moderate correlation suggests other contributors to increased loading were present. In conclusion, this study is a first step at identifying how lumbar segment movement is altered during CP gait.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call