Abstract

Three-dimensional (3-D) localized magnetic reconnection was studied experimentally using torus plasma merging device TS-4. The direct measurements of 3-D structures of current sheet revealed two unsteady and fast reconnection mechanisms: 3-D deformation of current sheet and mass ejection. When strong compression force IAcc∼60kA was applied to two plasma toroids with low guide field Bt/B¦¦∼1, toroidal modes n=1-3 of current sheet were observed to grow only during their reconnection and to disappear after the reconnection. This 3-D deformation promoted mass ejection from the current sheet, increasing the reconnection rate as well as reconnection (toroidal) electric field and outflow. On the other hand, the reconnection rate was maintained low under the high guide field Bt/B¦¦∼7 and weak compression IAcc∼0kA. These phenomena suggest that local compression of current sheet triggers its strong dissipation as well as plasma mass ejection, which are responsible for the onset of 3-D localized reconnection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call