Abstract

The present article reports on both experimental and numerical study of three-dimensional laminar wall jet flows. The wall jet was created using a circular pipe of diameter 7 mm and flows into an open channel. The Reynolds numbers based on the pipe diameter and jet exit velocity were varied from 310 to 1300. A particle image velocimetry (PIV) was used to conduct detailed velocity measurements at various streamwise-transverse and streamwise-spanwise planes. A complete nonlinear incompressible Navier-Stokes equation was also solved using a co-located finite volume based in-house computational fluid dynamic (CFD) code. This code was used to compute the experimental flow geometry. From the PIV measurements and CFD results, velocities profiles and jet-half-widths were extracted at selected locations. It was observed that the numerical results are in reasonable agreement with the experimental data. The distributions of the velocities, jet-half-widths and visualisation of the secondary flows were used to provide insight into the characteristics of three-dimensional wall jet flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.