Abstract

Three-dimensional laminar slip-flow and heat transfer in rectangular microchannels having constant temperature walls are studied numerically using the finite-volume method for thermally and simultaneously developing flows. The Navier–Stokes and energy equations are solved with velocity slip and temperature jump at the wall. A modified convection–diffusion coefficient at the wall–fluid interface is defined to incorporate the temperature-jump boundary condition. Validity of the numerical simulation procedure is established and the effect of rarefaction on hydrodynamicaly developing flow field, pressure gradient and entrance length is analyzed. A correlation for the fully developed friction factor is presented as a function of Knudsen number ( Kn) and aspect ratio ( α). The influence of rarefaction on the Nusselt ( Nu) number is investigated for thermally and simultaneously developing flows. The effect of velocity slip is found to increase the Nu number, while the temperature-jump tends to decrease it, and the combined effect could result in an increase or a decrease in the Nu number. In the fully developed region, there could be high as 15% increase or low as 50% decrease in Nu number is plausible for the range of parameters considered in this work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.