Abstract

The hypothesis which motivated the work reported in this article was that neglecting pure moments developed between the foot and pedal during cycling leads to a substantial error in computing axial and varus/valgus moments at the knee. To test this hypothesis, a mathematical procedure was developed for computing the three-dimensional knee loads using three-dimensional pedal forces and moments. In addition to data from a six-load-component pedal dynamometer, the model used pedal position and orientation and knee position in the frontal plane to determine the knee joint loads. Experimental data were collected from the right leg of 11 male subjects during steady-state cycling at 90 rpm and 225 W. The mean peak varus knee moment calculated was 15.3 N m and the mean peak valgus knee moment was 11.2 N m. Neglecting the pedal moment about the anterior/posterior axis resulted in an average absolute error of 2.6 N m and a maximum absolute error of 4.0 N m in the varus/valgus knee moment. The mean peak internal and external axial knee moments were 2.8 N m and 2.3 N m, respectively. The average and maximum absolute errors in the axial knee moment for not including the moment about an axis normal to the pedal were found to be 2.6 N m and 5.0 N m, respectively. The results strongly support the use of three-dimensional pedal loads in the computation of knee joint moments out of the sagittal plane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call