Abstract

Potential utilities of instrumented lightweight unmanned aerial vehicles (UAVs) to quickly characterize tropospheric ozone pollution and meteorological factors including air temperature and relative humidity at three-dimensional scales are highlighted in this study. Both vertical and horizontal variations of ozone within the 1000 m lower troposphere at a local area of 4 × 4 km2 are investigated during summer and autumn times. Results from field measurements show that the UAV platform has a sufficient reliability and precision in capturing spatiotemporal variations of ozone and meteorological factors. The results also reveal that ozone vertical variation is mainly linked to the vertical distribution patterns of air temperature and the horizontal transport of air masses from other regions. In addition, significant horizontal variations of ozone are also observed at different levels. Without major exhaust sources, ozone horizontal variation has a strong correlation with the vertical convection intensity of air masses within the lower troposphere. Higher air temperatures are usually related to lower ozone horizontal variations at the localized area, whereas underlying surface diversity has a week influence. Three-dimensional ozone maps are obtained using an interpolation method based on UAV collected samples, which are capable of clearly demonstrating the diurnal evolution processes of ozone within the 1000 m lower troposphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.