Abstract
AbstractThe global, temporal stability of the two-dimensional, incompressible flow over a forward-facing step in a plane channel is investigated numerically. The geometry is varied systematically covering constriction ratios (step-to-inlet height) from 0.23 to 0.965. A three-dimensional linear stability analysis shows that the stability boundary is a smooth continuous function of the constriction ratio. If the critical Reynolds and wavenumbers are scaled appropriately, they approach a linear asymptotic behaviour for large step heights. The critical mode is found to be stationary and confined to the region of separated flow downstream of the step for all constriction ratios. An energy-transfer analysis reveals that the basic flow becomes unstable due to a combined effect involving lift-up and flow deceleration, leading to a critical mode exhibiting steady streaks. Moreover, the receptivity of the flow to initial as well as to structural perturbations is studied by means of an adjoint analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.