Abstract

A transmission electron microscope fitted with both pre-specimen and post-specimen spherical aberration correctors enables the possibility of aberration-corrected scanning confocal electron microscopy. Imaging modes available in this configuration can make use of either elastically or inelastically scattered electrons. In this paper we consider image contrast for elastically scattered electrons. It is shown that there is no linear phase contrast in the confocal condition, leading to very low contrast for a single atom. Multislice simulations of a thicker crystalline sample show that sample vertical location and thickness can be accurately determined. However, buried impurity layers do not give strong, nor readily interpretable contrast. The accompanying paper examines the detection of inelastically scattered electrons in the confocal geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.