Abstract

Experimental data for a series of three-dimensional shock wave/turbulent boundary-layer interaction flows at Mach 8.2 are presented. The test bodies, composed of sharp fins fastened to a flat plate test surface, were designed to generate flows with varying degrees of pressure gradient, boundary-layer separation, and turning angle. The data include surface pressure, heat transfer, and skin friction distributions as well as limited mean flowfield surveys in both the undisturbed and interaction regimes. The data were obtained for the purpose of validating computational models of these hypersonic interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call