Abstract

AbstractThis study presents a hydromechanical model, finite-discrete element method with fluid flow in three dimensions (FDEM-flow3D), that can simulate three-dimensional hydraulic fracturing of jointed rock mass with complex fracture networks. By taking full advantage of a unique topological connection between joint elements and solid elements in three-dimensional combined finite-discrete element method (FEMDEM) together with the cubic law, the authors built a three-dimensional fluid flow model. In addition, a connectivity search algorithm for arbitrarily complex three-dimensional fracture networks is proposed, which can be used to search the connectivity of arbitrarily complex three-dimensional fracture networks. Combining the connectivity search algorithm and the mechanical calculations of three-dimensional FEMDEM, the authors built the three-dimensional hydromechanical coupling model FDEM-flow3D, which directly implements hydromechanical coupling and can simulate fluid-driven fracturing in rock with a...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call