Abstract

1551 homomolecular single hydrogen-bonded frameworks in organic crystals have been classified into 148 topological types of three-periodic nets. Different representations of hydrogen-bonded frameworks as nets of molecular centroids, edge or ring nets are discussed. To study the influence of hydrogen bonds on the topology of molecular packings, 42,270 molecular crystals without hydrogen bonds have been considered. The topologies of molecular packings are found to be independent of hydrogen bonding. Analysis of 231 homomolecular frameworks composed of crystallographically different molecules shows that molecules not related by symmetry tend to form the same hydrogen-bond pattern. The relations between net topological types, space-group symmetry of crystals, site symmetry and point-group symmetry of molecules are discussed. As a result, a set of rules for the crystal design of molecular frameworks is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.