Abstract

β-Tricalcium phosphate (β-TCP) and collagen have been widely used to regenerate various hard tissues, but although Bioceramics and collagen have various biological advantages with respect to cellular activity, their usage has been limited due to β-TCP's inherent brittleness and low mechanical properties, along with the low shape-ability of the three-dimensional collagen. To overcome these material deficiencies, we fabricated a new hierarchical scaffold that consisted of a melt-plotted polycaprolactone (PCL)/β-TCP composite and embedded collagen nanofibers. The fabrication process was combined with general melt-plotting methods and electrospinning. To evaluate the capability of this hierarchical scaffold to act as a biomaterial for bone tissue regeneration, physical and biological assessments were performed. Scanning electron microscope (SEM) micrographs of the fabricated scaffolds indicated that the β-TCP particles were uniformly embedded in PCL struts and that electrospun collagen nanofibers (diameter = 160 nm) were well layered between the composite struts. By accommodating the β-TCP and collagen nanofibers, the hierarchical composite scaffolds showed dramatic water-absorption ability (100% increase), increased hydrophilic properties (20%), and good mechanical properties similar to PCL/β-TCP composite. MTT assay and SEM images of cell-seeded scaffolds showed that the initial attachment of osteoblast-like cells (MG63) in the hierarchical scaffold was 2.2 times higher than that on the PCL/β-TCP composite scaffold. Additionally, the proliferation rate of the cells was about two times higher than that of the composite scaffold after 7 days of cell culture. Based on these results, we conclude that the collagen nanofibers and β-TCP particles in the scaffold provide good synergistic effects for cell activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.