Abstract

We sought to develop a whole-heart magnetic resonance angiography technique with three-dimensional (3D) respiratory motion compensation and reduced scan time. A novel respiratory motion compensation method was implemented that acquires a 1D navigator (NAV) and a low-resolution 3D-image of the heart (3D-LOC) just before the angiography data. The central 10% of SSFP k-space was fully acquired using NAV-gating, and then 10% of peripheral k-space was randomly undersampled to complete the scan. Spatial registration of the 3D-LOC information was used to correct the central and peripheral k-space lines for the bulk respiratory motion in three dimensions, and then the remaining k-space data was estimated using compressed sensing (CS). Ten volunteers each underwent two angiography acquisitions with 1 mm(3) resolution: (i) conventional NAV with CS, and (ii) the new 3D-LOC with CS. Compared with conventional NAV, the new 3D-LOC with CS technique had a shorter scan time (4.8 ± 1.1 versus 6.3 ± 1.7 min; P < 0.001), better objective vessel sharpness for all three coronary arteries (P < 0.05), and no difference in subjective vessel sharpness for all three coronary arteries. Compared with conventional NAV with CS, acceleration and respiratory motion correction using 3D-LOC with CS reduces scan time and improves objective vessel sharpness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.