Abstract

The present study focuses on the application of scanning laser optical tomography (SLOT) for visualization of anatomical structures inside the human cochlea ex vivo. SLOT is a laser-based highly efficient microscopy technique which allows for tomographic imaging of the internal structure of transparent specimens. Thus, in the field of otology this technique is best convenient for an ex vivo study of the inner ear anatomy. For this purpose, the preparation before imaging comprises decalcification, dehydration as well as optical clearing of the cochlea samples in toto. Here, we demonstrate results of SLOT imaging visualizing hard and soft tissue structures with an optical resolution of down to 15 μm using extinction and autofluorescence as contrast mechanisms. Furthermore, the internal structure can be analyzed nondestructively and quantitatively in detail by sectioning of the three-dimensional datasets. The method of X-ray Micro Computed Tomography (μCT) has been previously applied to explanted cochlea and is solely based on absorption contrast. An advantage of SLOT is that it uses visible light for image formation and thus provides a variety of contrast mechanisms known from other light microscopy techniques, such as fluorescence or scattering. We show that SLOT data is consistent with μCT anatomical data and provides additional information by using fluorescence. We demonstrate that SLOT is applicable for cochlea with metallic cochlear implants (CI) that would lead to significant artifacts in μCT imaging. In conclusion, the present study demonstrates the capability of SLOT for resolution visualization of cleared human cochleae ex vivo using multiple contrast mechanisms and lays the foundation for a broad variety of additional studies.

Highlights

  • Imaging the functional anatomy of the human inner ear is of high interest for the study and therapy of hearing disorders [1,2,3]

  • The application of the clearing agent causes a subsequent swelling of the sample so that in the end, the total shrinkage is roughly about 10% depending on the dehydration liquid and the clearing agent

  • We presented scanning laser optical tomography (SLOT) as a novel three-dimensional ex vivo microscopy technique with great potential in the field of otology

Read more

Summary

Introduction

Imaging the functional anatomy of the human inner ear is of high interest for the study and therapy of hearing disorders [1,2,3]. Imaging modalities that enable non-destructive visualization of the three-dimensional structure of the cochlea are of special interest. There are two fundamental modalities of imaging the human cochlea: in vivo and ex vivo. In vivo measurements are performed on patients before or after cochlear implant (CI) insertion. Volumetric data is used to inform the insertion procedure and to assess implant placement after insertion. It has been shown that nuclear magnetic resonance (NMR) tomography as well as X-ray computed tomography (CT) are suited for this task [4,5,6]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.