Abstract
A new model for three-dimensional (3D) global simulation of heat transfer in a unidirectional solidification furnace with square crucibles was proposed. Convective, conductive and radiative heat transfers in the furnace are solved together in a coupled way by using a finite volume method. An efficient algorithm for view factor calculations in modeling radiative heat transfer and a mixed 2D/3D space discretization technique were developed. With coupling a 2D transient global simulation, the proposed 3D global model can be used to investigate 3D features of heat transfer in the entire furnace throughout a whole solidification process with moderate requirement of computation resources. Some typical results of 3D features of a unidirectional solidification furnace for producing multi-crystalline silicon used for solar cells were presented as a case study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.